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Online appendix to “Bayesian (comparative) journalism studies”

Source Code

All source will be available on the author(s)’ Github upon acceptance. The following

are key code chunks used in the paper.

Expression of outlet-level models in lme4 and brms

require(brms)

require(lme4)

# brms

brm(z ~ offset(log(n)) + (1|k)+log(x),

family = negbinomial(), data = outlet_data)

# lme4

glmer.nb(z ~ offset(log(n)) + (1|k) + log(x), data = outlet_data)

Expression of disaggregated out-level model in MASS

require(MASS)

glm.nb(z ~ offset(log(n)) + log(x), data = outlet_data)

Expression of article-level models in lme4 and brms

brm(y~(1|k/j)+log(x), family = bernoulli(), data = article_data)

glmmer(y~(1|k/j)+log(x), family = binomial(), data = article_data)

Expression of disaggregated article-level model in MASS

glm(y ~ log(x), family = binomial(), data = article_data)
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Setting up weakly informative prior in the brms model

weaklyinformative_prior <- c(prior_string("normal(0, 1)",

class = "b"),

prior_string("normal(0, 1)",

class = "Intercept"))

# The sample_prior argument is optional. But useful for further analysis.

import_brms <- brm(z~offset(log(n))+(1|k)+log(x_import),

data = outlet_data, family = negbinomial(),

prior = weaklyinformative_prior, sample_prior = TRUE)

import_brms

WJS: Estimation of prior

beta_d_1 <- 0.15

sig_level <- 0.001

beta_d_1 / abs(qnorm(sig_level / 2))

WJS: Full code

The cubic relationship can be set using the I() function.

require(tidyverse)

informative_prior <- c(prior_string("normal(0, 1)", class = "b"),

prior_string("normal(0, 1)", class = "Intercept"),

prior_string("normal(0.14, 0.045)",

class = "b", coef = "EXPRNCE"),

prior_string("normal(0.07, 0.027)",

class = "b", coef = "RANK"))
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std <- function(x){

(x - mean(x, na.rm = TRUE))/sd(x, na.rm = TRUE)

}

## eiu is Index of Democracy, gdppc is GDP per capita (log)

set.seed(12121)

wjs %>%

select(ppa, EXPRNCE, RANK, GENDER, UNI_EDU, UNI_EDU, eiu, gdppc, COUNTRY) %>%

mutate(gdppc = log(gdppc), COUNTRY = as.factor(COUNTRY)) %>%

mutate_at(vars(ppa:gdppc), std) -> wjs_processed

brm(ppa ~ EXPRNCE + RANK + GENDER + UNI_EDU + eiu + gdppc + (1|COUNTRY),

data = wjs_processed, cores = 4, iter = 3000, prior = informative_prior,

sample_prior = TRUE) -> ppa_mod

set.seed(12121)

## iter needs to set larger to ensure convergence

brm(ppa ~ EXPRNCE + RANK + GENDER + UNI_EDU + I(eiu^3) + gdppc + (1|COUNTRY),

data = wjs_processed, cores = 4, iter = 4000, prior = informative_prior,

sample_prior = TRUE) -> ppa_qmod

Validation of the seed dictionaries

One might argue our seed dictionaries are not validated. We deem that the criterion

validity of our dictionary should be built-in. Coverage of China, by definition, should

mention words about China. We also maintain that it is difficult to conduct a human

validation of the seed dictionaries because the useNews dataset (Puschmann & Haim, 2020)

doesn’t provide access to the full-length articles. Nonetheless, we attempted to conduct

such validation by randomly selecting 10 matching and 10 non-matching items for each
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language. In total, 160 items were selected. A coder with no knowledge of the ground truth

(matching or not) annotated the full-text articles by following the URLs in the meta data

provided in the useNews dataset (Puschmann & Haim, 2020). For some languages, the

coder used Google Translate to translate the full text article to English. In total, only 138

URLs were still accessible. Comparing the ground truth and the human coding, 62 and 70

are true-positive and true-negative cases. There are also 5 false-negative and 1 false-positive

cases. There are several reasons not related to our seed dictionaries that could lead to the 6

misclassified cases. The false-positive case is Korean and that could be due to incorrect

tokenization at the MIT Media Cloud’s end. The 5 false-negative cases are in Norwegian,

Portuguese, and Romanian. The content on the website might have changed since MIT

Media Cloud collected the data. For example, the ever-changing content in the sidebar

might be counted as “main content” and recorded in the DTM. Despite all these caveats,

our seed dictionaries have a precision and recall of 98.4% and 92.5% respectively. For the

purpose of demonstrating regression analysis, this level of accuracy is more than sufficient.

Extensions to Example 1

Extension #1: Hypothesis testing

Under the Bayesian framework, we can test hypotheses about the parameter

estimates (Shikano, 2019). These hypotheses are similar to the null hypothesis in the

Neyman-Pearson’s sense. For example, we want to test the two-sided hypothesis of 𝛾01 = 0
for Model A1. For this, we need to calculate the posterior probability of this hypothesis:

𝑃(𝛾01 = 0|𝑋). The function hypothesis() can be used to test such hypothesis.

hypothesis(import_brms, "logx_import = 0")

The posterior probability of this hypothesis is 0. Therefore, we can safely reject the

hypothesis and conclude that 𝛾01 ≠ 0, i.e. log import volume of the outlet’s country is

associated with the frequency of China coverage at the outlet level.
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While accepting a null hypothesis is not a feasible option in a frequentist framework,

as such a framework has an “inability to gain evidence for the null” (Rouder, Speckman,

Sun, Morey, & Iverson, 2009, p. 226) hypothesis, it is practically possible to accept a null

hypothesis in a Bayesian framework (Kruschke, 2018). Bayes factor or the region of

practical equivalence (ROPE) could be used to decide to accept the null hypothesis.

Kruschke (2018), for example, suggests using 𝜎 = ±0.1 as half of small effect size to

establish a ROPE. However, there is no fixed rule on how to define a ROPE. If now 95% of

the HDI for an estimate falls within the ROPE, researchers could accept the null

hypothesis for practical purposes. A practical application could be with manual content

analysis or survey research in communication research if some variables are challenging and

costly to measure. In a frequentist framework, failing to reject the null hypothesis could

wrongly inform researchers to collect more data in subsequent studies to discern between

insufficient power1 or the null is true. Instead, ROPE could be used to decide whether, in

future studies, more data should be collected to retest the same hypothesis. When ROPE

provides a strong signal that the null hypothesis is true, it is no longer worthy to collect

more of the costly data just to boost the statistical power.

The package bayestestR (Makowski, Ben-Shachar, & Lüdecke, 2019) can be used to

calculate and visualize the ROPE.

library(bayestestR)

rope(import_brms)

plot(rope(import_brms))

The proportion of 95% HDI falling inside the ROPE is 0%. Figure 1 also displays

that the 95% HDI (the pink region) have no overlap with the ROPE (the shaded region).

Using the decision rules by Kruschke (2018), there are 3 possible scenarios: reject the null

1 Statistical power is a frequentist concept specifying the long run probability of correctly rejecting the null

hypothesis. It is usually not relevant for Bayesian inference.
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Figure 1. The Region of Practical Equivalence and the 95% High Density Interval

(when most of the 95% HDI falls outside the ROPE), accept the null (when most of the

95% HDI falls inside the ROPE) and undecided (when it can’t be decided). In the current

situation, it is very clear that the 95% HDI falls outside of the ROPE as there is 0%

overlap. Similar to the result from hypothesis(), there is a practical effect and it is correct

to reject the null hypothesis.

However, in another situation when we have a simulated independent variable noise

that is basically random noise.

outlet_data$noise <- rnorm(nrow(outlet_data))

noise_brms <- brm(z~offset(log(n))+(1|k)+noise,

data = outlet_data, family = negbinomial(),
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control = list(adapt_delta = 0.99),

prior = weaklyinformative_prior,

sample_prior = TRUE)

rope(noise_brms)

In this situation, the proportion of 95% HDI falls inside the ROPE is 68%. The

proportion is quite high but it is not decisive. Kruschke (2018) suggests accepting the null

when more than 95% of the 95% HDI falls inside the ROPE. Accordingly, the current

situation of 68% is “undecided”. It might be worthwhile to retest the hypothesis with a

larger amount of data.

One should note that the decision rules by Kruschke (2018) depend on many

methodological decisions, e.g. how to determine the ROPE, how wide should the ROPE be,

and which level of HDI to use. ROPE is also sensitive to the scale of measurement.

Nonetheless, ROPE can provide much richer information to inform how future studies

should be designed.

Extension #2: Cross-level interaction

We can also study the interaction between a macro- and a micro-level variable.

Cross-level interaction is useful to study how the effect of context variables manifest

differently in individuals with different characteristics. An example of cross-level

interaction in our example is whether the relationship between import volume and increase

in China coverage manifests differently between public broadcasters and for-profit media.

We can model a cross-level interaction by adding an interaction term between the

macro- and micro-level variables, as well as a varying-slope component for the micro-level

variable (Heisig & Schaeffer, 2019). With brms, it can be done with this:
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# suppose "public" is a binary variable

import_brms_public <- brm(

z~offset(log(n))+(1 + public|k)+log(x_import)*public,

data = outlet_data, family = negbinomial(),

prior = weaklyinformative_prior, sample_prior = TRUE)

import_brms_public

The regression coefficients for the main effect of public broadcasting and the

interaction terms have a wide 95% HDI that covers zero. It can be visualized with a

conditional effects plot (Figure 2, using the conditional_effects() function). The trajectories

of public broadcasters and for-profit media outlets are similar, indicating no interaction.
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Figure 2. Conditional effects plot showing no interaction among public broadcasting, import

volume and China coverage.
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Extension #3: Current study as the informative prior for the next study

Suppose we would like to replicate the study and confirm the same relationship with

the 2020 useNews data. This time, we do not need to (and actually, we should not) use the

weakly informative prior again. It is because we have prior understanding about the

outlet-level determinants of China coverage: We know from the 2019 data that 𝛾01 should

be around 0.25 with a standard deviation of 0.05. This can be entered into our new

analysis as the informative prior.

informative_prior <- c(prior_string("normal(0.25, 0.05)", class = "b",

coef = "logx_import"),

prior_string("normal(-6.69, 0.66)",

class = "Intercept"))

import_2020 <- brm(z_2020~offset(log(n_2020))+(1|k)+log(x_import),

data = outlet_data2020, family = negbinomial(),

prior = informative_prior, sample_prior = TRUE)

The new analysis showed that 𝛾01 is 0.22 with a 95% HDI of (0.15 to 0.29) for the

year 2020. This analysis displays two things: 1) selection of prior is not always, as many

authors have suggested, as controversial and subjective; and 2) Bayesian analysis also

makes a strong case for replication studies, which open science hopes to enable (Dienlin et

al., 2020). The use of informative prior in replication studies enables us to update our prior

beliefs with the new evidence from the replications. Priors, replicable or not, will get

updated.

Extension #4: Temporal changes

Bayesian multilevel regression analysis is also useful to study temporal changes,

because observations from the same subject collected from different time points are

naturally a cluster. The same strategy for handling the clustering of observations in the
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multilevel modeling can be used. We model that observations from the same media outlet

are nested within the media outlet and then the media outlet is nested within its countries.

Suppose we would like to study if there is a systematic increase in 𝑧 across all outlets,

maybe due to the COVID-19 pandemic or the presidential election in the US. It can be

analyzed with this three-level model.

## Suppose yr is a binary dummy variable indicating the year 2020.

import_long <- brm(z~offset(log(n))+(1|k/i)+yr, data = outlet_long,

family = negbinomial(),

prior = weaklyinformative_prior,

sample_prior = TRUE)

import_long

The regression coefficient for the year dummy variable is 0.49 (95% HDI 0.38, 0.60).

There is a global increase in China coverage from 2019 to 2020.

Leave-one-out cross validation of Example 2

Another way to compare the cubic model and the parsimonious model is to conduct a

leave-one-out cross validation (LOO). The basic idea of LOO is to study the out-of-sample

accuracy of the model by removing one data point at a time. Given the rest of the data

and the prediction model, one evaluates how accurate is the model to predict the outcome

of the removed data point. The Bayesian LOO estimate of out-of-sample predictive fit

(𝑒𝑙𝑝𝑑𝑙𝑜𝑜) can be used to compare the out-of-sample accuracy of models (Vehtari, Gelman,

& Gabry, 2016).

In R, the LOO cross validation of the two models (parsimonious model: ppa_mod;

cubic model ppa_qmod) can be launched with the function loo.
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loo(ppa_qmod, ppa_mod)

The difference in 𝑒𝑙𝑝𝑑𝑙𝑜𝑜 between the cubic model and the parsimonious model is only

-0.3 with a larger standard error of 0.5. One would say there is a difference in out of sample

model fit, when 𝑒𝑙𝑝𝑎𝑙𝑜𝑜 is many times larger than its standard error.
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